TRANSFORMASI FOURIER QUATERNIO

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of a jump by Fourier and Fourier-Chebyshev series

‎By observing the equivalence of assertions on determining the jump of a‎ ‎function by its differentiated or integrated Fourier series‎, ‎we generalize a‎ ‎previous result of Kvernadze‎, ‎Hagstrom and Shapiro to the whole class of‎ ‎functions of harmonic bounded variation‎. ‎This is achieved without the finiteness assumption on‎ ‎the number of discontinuities‎. ‎Two results on determination of ...

متن کامل

Self Fourier functions and fractional Fourier transforms

It was shown [ 21 that any SFF can be decomposed in this manner. Thus, F(x) is an SFF if, and only if, it can be expressed as the sum of four functions in the form of the above equation. Additional SFF studies are reported in refs. [ 3-51. Another issue that has been recently investigated is the fractional Fourier transform [ 6-91. Two distinct definitions of the fractional Fourier transform ha...

متن کامل

Discrete–time Fourier Series and Fourier Transforms

We now start considering discrete–time signals. A discrete–time signal is a function (real or complex valued) whose argument runs over the integers, rather than over the real line. We shall use square brackets, as in x[n], for discrete–time signals and round parentheses, as in x(t), for continuous–time signals. This is the notation used in EECE 359 and EECE 369. Discrete–time signals arise in t...

متن کامل

Bilinear Fourier integral operator and its boundedness

We consider the bilinear Fourier integral operatorS(f, g)(x) =ZRdZRdei1(x,)ei2(x,)(x, , ) ˆ f()ˆg()d d,on modulation spaces. Our aim is to indicate this operator is well defined onS(Rd) and shall show the relationship between the bilinear operator and BFIO onmodulation spaces.

متن کامل

Discrete–time Fourier Series and Fourier Transforms

We now start considering discrete–time signals. A discrete–time signal is a function (real or complex valued) whose argument runs over the integers, rather than over the real line. We shall use square brackets, as in x[n], for discrete–time signals and round parentheses, as in x(t), for continuous–time signals. This is the notation used in EECE 359 and EECE 369. Discrete–time signals arise in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JURNAL ILMIAH MATEMATIKA DAN TERAPAN

سال: 2016

ISSN: 2540-766X,1829-8133

DOI: 10.22487/2540766x.2013.v10.i1.7455